Dunking a basketball is a lot of fun, and for most of us that is really the only reason to do it. Especially when you are a shorter player, it is cool to see the looks on the big guys’ faces when you do something you really ought not to be able to do. But let’s be realistic here: If you want to be a good basketball player there are many, many skills that are more important to spend time on. For most of us, the ability to dunk is an insignificant part of our game.
After four months of failing to pull off anything even resembling a real dunk, the planets aligned on Aug. 9: After at least 19 failed attempts that afternoon, I dunked a soccer ball on a middle school court whose rim measured 9' 11". (The original basketball, incidentally, was a soccer ball, property of Dr. Naismith’s employer, Springfield College.) Video from that afternoon shows me standing there, looking confused, in the moment afterward. Did that just happen? Failing had become so routine that even this small success felt foreign.
You will need to get at least that high to be able to snap the ball into the basket. If you're relatively short, then you have your work cut out for you. Developing a one-handed dunk requires less vertical ability than a two-handed dunk, and, for most players, jumping off of one foot from a running start makes it easier to jump high enough to dunk. There are many things that you can do to work on your vertical leap.
I'm 5"11 and 12 years old, and i'm able to touch the rim, but it's very inconsistent. like 50% of the time I can wrap my 3 biggest fingers around it, or i dont touch it the other 50% of the time. I've been training for about 4 months, doing calf raises every day until they cramp, and everyday i try to touch the rim at my gym or school or at any court. I found out i could touch the rim 2 days ago, but is there any way to add 7 inches to my vertical instead of doing thousands of calf raises again, because i really want to be able to dunk by 8th gradr

Looking for something amazing for your party? Have a one of a kind experience at Vertical Jump Park! Attractions include: 6,000 square feet of open jump trampolines, 3 basketball dunking lanes, a huge stunt bag, a jousting battle beam, 2 dodgeball courts, a incredible rock climbing wall and a amazing ninja course not to mention the best arcade in town!
Two foot jumpers spend a lot more time on the ground during take-off than one-foot jumpers. This allows them to generate a lot of force through the muscles of the calves, quads, glutes and hips. While one-foot jumpers rely heavily on elasticity and "bounciness", two-foot jumps are more reliant on strength and power. This is one of the reasons why football players are excellent two-foot jumpers - they have really strong lower bodies!
This is why using a slightly deeper countermovement often increases jump height, because the larger range of motion allows the muscles to exert force for a longer duration of time before take-off. Jump height *can* increase even though the force produced is almost always smaller. (Force is smaller when the countermovement is deeper partly because shortening through a longer range of motion leads to a faster contraction velocity, on account of the force-velocity relationship, and partly because the leverage of bodyweight on the lower body joints is larger with a deeper countermovement).

My warmup on March 29, following a day of recovery, left me feeling hoppier than I’d expected, and not nearly as achy. After 10 devastating near misses, and several others that weren’t as close, Jeff lofted the best lob I would see during this journey. I leaped, controlled it with one hand and—boodaloomp—in and out. I could have wept. “You got this!” Jeff implored. “You know you got this!”
When tendons elongate to a greater extent during a jumping movement that is preceded by a countermovement, the muscle lengthens less. This produces two effects. Firstly, the greater elongation of the tendon means that more elastic energy is stored during the countermovement, which is then released in the subsequent jumping phase. Secondly, the smaller elongation of the muscle means that countermovement depth can be greater for the same shortening velocity in the subsequent jumping phase, because the muscle never lengthened that much to begin with. Since shortening velocity determines force, this allows the same muscle force to be produced, despite the larger joint range of motion.
This phase begins with the athlete at the bottom of the jump, just as he begins exploding upwards towards the takeoff. The force-time graph shows that the athlete reaches peak forces shortly after reaching the lowest point of the jump. He then further accelerates until his feet leave the ground and there are no more ground reaction forces measurable.

A strut is a major structural part of a suspension. It takes the place of the upper control arm and upper ball joint used in conventional suspensions. Because of its design, a strut is lighter and takes up less space than the shock absorbers in conventional suspension systems. Struts perform two main jobs. First, struts perform a damping function like shock absorbers. Internally, a strut is similar to a shock absorber. A piston is attached to the end of the piston rod and works against hydraulic fluid to control spring and suspension movement. Just like shock absorbers, the valving generates resistance to forces created by the up and down motion of the suspension. Also like shock absorbers, a strut is velocity sensitive, meaning that it is valved so that the amount of resistance can increase or decrease depending on how fast the suspension moves.
To start the test, you need to stand with your right side against a wall. If you have access to a chalk board or a vertex (the measuring tool used by biokineticists), it makes this easier, however, you can use an outside wall. For the first marking, stand in your training shoes with your right hip against the wall. Reach up with your right hand to touch the wall at the highest point possible (while keeping your heels flat on the ground). Mark this point with chalk, as this is your “standing height.”
Secondly, in addition to the rate of force development, the size of the force itself produces a negative feedback effect on vertical impulse, because higher forces lead to faster accelerations, which in turn reduce the time spent producing force before take-off. This is *partly* why drop jumps tend to involve higher forces, shorter ground contact times, and yet similar jump heights to countermovement jumps.
Two foot jumpers spend a lot more time on the ground during take-off than one-foot jumpers. This allows them to generate a lot of force through the muscles of the calves, quads, glutes and hips. While one-foot jumpers rely heavily on elasticity and "bounciness", two-foot jumps are more reliant on strength and power. This is one of the reasons why football players are excellent two-foot jumpers - they have really strong lower bodies!
Which is why, on April 1, 2014, I dedicated myself to dunking a basketball for the first time. So that I could live it, breathe it, perhaps take a crack at it with my pen. I had tossed this idea around for years, realizing with each passing birthday that my chances of success were dimming. However, on that April Fool’s Day (a coincidence) I spent three hours on the court and at the gym, with a promise to myself to return several times each week until I threw one down like Gerald Green. Or at least like Litterial Green, who played in 148 NBA games between 1992 and ’99, and who, like me, was born in the early ’70s, stands 6'1", 185 pounds and is at no risk of having dunker carved into his epitaph.

Rope skipping is also a very basic form of a type of exercise called plyometrics. Plyometric exercises involve repetitive explosive movements, such as jumping up and down or catching and throwing a medicine ball. The idea is to execute the movement with as little downtime as possible between repetitions. This, in effect, trains muscles to be powerful and explosive, and utilize the kinetic energy inherent in athletic movements in the most efficient way.
Typically, struts consists of a coil spring to support the vehicle's weight, a strut housing to provide rigid structural support for the assembly, and a damping unit within the strut housing to control spring and suspension movement. The bottom of the strut body attaches to the steering knuckle, which in turn connects to a lower control arm through a lower ball joint.
The materials and information provided in this presentation, document and/or any other communication (“Communication”) from Onnit Labs, Inc. or any related entity or person (collectively “Onnit”) are strictly for informational purposes only and are not intended for use as diagnosis, prevention or treatment of a health problem or as a substitute for consulting a qualified medical professional. Some of the concepts presented herein may be theoretical.

Exactly which muscles are most important for improving the vertical jump is still relatively unclear, and may differ between individuals. Clearly, the spinal erectors, hip extensors, quadriceps, and calf muscles are all involved in the jumping movement, and the hip extensors and quadriceps are likely the prime movers, but which of the hip extensors is the primary muscle is very unclear. Importantly, since force production is required right up until take-off, the lower body muscles must produce force from moderate through to short muscle lengths, which differs from the barbell back squat exercise.

Overall, 309 patients (18.4%) had an arrhythmia; the most common type of arrhythmia was atrial fibrillation, which occurred in 266 patients (86.1%). More patients had an arrhythmia, especially atrial fibrillation, in the dopamine group than in the norepinephrine group (Table 3). The study drug was discontinued in 65 patients owing to severe arrhythmias — 52 patients (6.1%) in the dopamine group and 13 patients (1.6%) in the norepinephrine group (P<0.001). These patients were included in the intention-to-treat analysis. There were no significant differences between the groups in the incidences of other adverse events.
The materials and information provided in this presentation, document and/or any other communication (“Communication”) from Onnit Labs, Inc. or any related entity or person (collectively “Onnit”) are strictly for informational purposes only and are not intended for use as diagnosis, prevention or treatment of a health problem or as a substitute for consulting a qualified medical professional. Some of the concepts presented herein may be theoretical.
Data on hemodynamic variables and doses of vasoactive agents are shown in Figure 3 and Figure 4 in the Supplementary Appendix. The mean arterial pressure was similar in the two treatment groups at baseline, and it changed similarly over time, although it was slightly higher from 12 to 24 hours in the norepinephrine group. The doses of the study drug were similar in the two groups at all times. More patients in the dopamine group than in the norepinephrine group required open-label norepinephrine therapy at some point (26% vs. 20%, P<0.001), but the doses of open-label norepinephrine that were administered were similar in the two groups. The use of open-label epinephrine at any time was similar in the two groups (administered in 3.5% of patients in the dopamine group and in 2.3% of those in the norepinephrine group, P=0.10), as was the use of vasopressin (0.2% in both groups, P=0.67). Dobutamine was used more frequently in patients treated with norepinephrine, but 12 hours after randomization, the doses of dobutamine were significantly higher in patients treated with dopamine. The mean (±SD) time to the achievement of a mean arterial pressure of 65 mm Hg was similar in the two groups (6.3±5.6 hours in the dopamine group and 6.0±4.9 hours in the norepinephrine group, P=0.35). There were no major between-group differences in the total amounts of fluid given, although patients in the dopamine group received more fluids on day 1 than did patients in the norepinephrine group. Urine output was significantly higher during the first 24 hours after randomization among patients in the dopamine group than among those in the norepinephrine group, but this difference eventually disappeared, so that the fluid balance was quite similar between the two groups.

El libro La doctrina del shock propone que las políticas económicas del Premio Nobel Milton Friedman y de la Escuela de Economía de Chicago han alcanzado importancia en países con modelos de libre mercado no porque fuesen populares, sino a través de impactos en la psicología social a partir de desastres o contingencias, provocando que, ante la conmoción y confusión, se puedan hacer reformas impopulares. Se supone que algunas de estas perturbaciones, como la Guerra de las Malvinas, el 11 de septiembre, el Tsunami de 2004 en Indonesia, o la crisis del huracán Katrina pudieron haber sido aprovechadas con la intención de forzar la aprobación de una serie de reformas.
This list of movements was compiled by a pair of trainers who know a thing or two about making athletes more explosive: Jason Benguche, assistant strength and conditioning coach for the Carolina Panthers (@movement_mogul on Instagram), works one-one-one during the season with the NFL’s most explosive quarterback, Cam Newton. And Firdose Khan (@dose_9), head trainer at Nine Innovations athlete training facility in Houston, has worked with such athletes as former NBA MVP Derrick Rose and NFLers Arian Foster, Braxton Miller, and Brian Cushing.

A second, more efficient and correct method is to use an infrared laser placed at ground level. When an athlete jumps and breaks the plane of the laser with his/her hand, the height at which this occurs is measured. Devices based on United States Patent 5031903, "A vertical jump testing device comprising a plurality of vertically arranged measuring elements each pivotally mounted..." are also common. These devices are used at the highest levels of collegiate and professional performance testing. They are composed of several (roughly 70) 14-inch prongs placed 0.5 inches apart vertically. An athlete will then leap vertically (no running start or step) and make contact with the retractable prongs to mark their leaping ability. This device is used each year at the NFL scouting combine.
×