A strut is a major structural part of a suspension. It takes the place of the upper control arm and upper ball joint used in conventional suspensions. Because of its design, a strut is lighter and takes up less space than the shock absorbers in conventional suspension systems. Struts perform two main jobs. First, struts perform a damping function like shock absorbers. Internally, a strut is similar to a shock absorber. A piston is attached to the end of the piston rod and works against hydraulic fluid to control spring and suspension movement. Just like shock absorbers, the valving generates resistance to forces created by the up and down motion of the suspension. Also like shock absorbers, a strut is velocity sensitive, meaning that it is valved so that the amount of resistance can increase or decrease depending on how fast the suspension moves. 

The simplest method to measure an athlete's vertical jump is to get the athlete to reach up against a flat wall, with a flat surface under his/her feet (such as a gym floor or concrete) and record the highest point he/she can reach flat-footed (the height of this point from the ground is referred to as "standing reach"); fingertips powdered with chalk can facilitate the determination of points touched on the wall. The athlete then makes an effort to jump up with the goal of touching the highest point on the wall that he or she can reach; the athlete can perform these jumps as many times as needed. The height of the highest point the athlete touches is recorded. The difference between this height and the standing reach is the athlete's vertical jump.